Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[2,2'-Iminodiethanolato(2-)- $\left.\boldsymbol{\kappa}^{3} \mathrm{O}, \mathrm{N}, \mathrm{O}^{\prime}\right]$ -[4-(methoxycarbonylmethyl)phenyl]boron

Ahmed L. Zein, Louise N. Dawe and Paris E. Georghiou*
Department of Chemistry, Memorial University of Newfoundland, St Johns, NL, Canada A1B 3X7
Correspondence e-mail: parisg@mun.ca
Received 7 September 2010; accepted 21 September 2010
Key indicators: single-crystal X-ray study; $T=153 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.043 ; w R$ factor $=0.112$; data-to-parameter ratio $=10.0$.

The title compound, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BNO}_{4}$, was readily obtained from the reaction of methyl 4-boronobenzene acetate with ethanolamine. A combination of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions leads to the pairwise association of molecules.

Related literature

For background to the biological importance of boron, see: Warrington (1923); Jabbour et al. (2004). For the use of boroncontaining reagents in synthetic chemistry, see: Miyaura \& Suzuki (1995); Corey et al. (1987); Liu et al. (2007); Jung \& Lazarova (1999); Chan et al. (1998); Evans et al. (1998); Lam et al. (1998). For related structures, see: Rettig \& Trotter (1975); Wang \& Georghiou (2002).

Experimental

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BNO}_{4}$
$M_{r}=263.10$
Orthorhombic, $P_{\circ} 2_{1} 2_{1} 2_{1}$
$a=8.3776$ (11) £
$b=8.9269(11) \AA$
$c=17.369(2) \AA$

$$
V=1299.0(3) \AA^{3}
$$

$Z=4$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=153 \mathrm{~K}$
$0.30 \times 0.09 \times 0.06 \mathrm{~mm}$

Data collection

Rigaku Saturn diffractometer
Absorption correction: numerical
(NUMABS; Higashi, 1999)
$T_{\text {min }}=0.985, T_{\text {max }}=0.997$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.112$
$S=1.17$
1725 reflections

16363 measured reflections 1725 independent reflections 1707 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$

173 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).
$C g 3$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.06	$2.921(2)$	154
$\mathrm{C} 10-\mathrm{H} 10 B \cdots C g 3^{\mathrm{ii}}$	0.99	2.65	$3.618(2)$	166
Symmetry codes: (i) $-x+2, y-\frac{1}{2},-z+\frac{1}{2} ;$	(ii) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$.			

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the NSERC and the Department of Chemistry for financial support. We are also grateful to the Ministry for Higher Education, Egypt, for a scholarship to ALZ.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2337).

References

Chan, D. M. T., Monaco, K. L., Wang, R. P. \& Winters, M. P. (1998). Tetrahedron Lett. 39, 2933-2936.
Corey, E. J., Bakshi, R. K. \& Shibata, S. (1987). J. Am. Chem. Soc. 109, 55535554.

Evans, D. A., Katz, J. L. \& West, T. R. (1998). Tetrahedron Lett. 39, 2937-2940.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo.
Jabbour, A., Steinberg, D., Valery, M. D., Moussaieff, A., Zaks, B. \& Srebnik, M. (2004). J. Med. Chem. 47, 2409-2410.

Jung, M. E. \& Lazarova, T. I. (1999). J. Org. Chem. 64, 2976-2977.
Lam, P. Y. S., Clark, C. G., Saubern, S., Adams, J., Winters, M. P., Chan, D. M. T. \& Combs, A. (1998). Tetrahedron Lett. 39, 2941-2944.
Liu, D., Canales, E. \& Corey, E. J. (2007). J. Am. Chem. Soc. 129, 1498-1499.
Miyaura, N. \& Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.
Rettig, S. J. \& Trotter, J. (1975). Can. J. Chem. 53, 1393-1401.
Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, Y.-C. \& Georghiou, P. E. (2002). Org. Lett. 4, 2675-2678.
Warrington, K. (1923). Ann. Bot. 37, 629-672.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

[2,2'-Iminodiethanolato(2-)- $\left.\boldsymbol{K}^{3} O, N, O^{\prime}\right][4-($ methoxycarbonylmethyl)phenyl]boron

A. L. Zein, L. N. Dawe and P. E. Georghiou

Comment

Boron is known to be an important trace element in higher plants (Warrington, 1923) and boron-containing compounds have been shown to have a range of diverse biological acvtivities (Jabbour et al., 2004). The use of boron-containing reagents is also widespread in synthetic chemistry and this is due mainly to the pioneering work of H. C. Brown and coworkers and Suzuki and his coworkers (Miyaura \& Suzuki, 1995). Corey, Bakshi and Shibata (Corey et al., 1987) discovered that a chrial oxazaborolidine ("CBS" reagent) which contains both boron-nitrogen and boron-oxygen bonds was capable of effecting enantioselective reduction of prochiral ketones, imines, and oximes to produce chiral alcohols, amines, and amino alcohols in excellent yields and ee's. Corey's group has also shown that chiral oxazaborolidine-aluminium bromide complexes (Liu et al. 2007) are also effective catalysts for enantioselective Diels-Alder reactions. In principle, oxazaborolidines are derived from reactions of a boronic acid and aminoalcohols and a less well known application of oxazaborolidines is to facilitate the conversion of a pinacolatoborane, by mild acid-catalysis (Jung \& Lazarova, 1999), to the corresponding boronic acid, a key step for cupric acetate promoted coupling of an arylboronic acids with phenols (Chan et al., 1998; Evans et al., 1998; Lam et al. 1998).

There has been only one reported X-ray crystallographic study of the structure of a diethanolamine ester of a phenylboronic acid (1) (Rettig \& Trotter, 1975). This compound which was named as B-phenyl-diptychboroxazolidine (alternative names: Tetrahydro-[1,3,2]oxaza-borol[2,3-b][1,3,2]oxazaborole; [[2,2'-(Imino-kN)bis[ethanolato-kO]](2)]phenylboron) was measured on a diffractometer with $\mathrm{Cu} K_{a}$ radiation and it was revealed to be non-centrosymmetric and in the $P 2_{1}$ space group. The absolute configuration of the enatiomorphic crystal was determined in this study. In connection with our own work (Wang \& Georghiou, 2002), crystals of (2), the corresponding diethanolamine ester of the 4-boronic acid derivative of methyl phenylacetate, were obtained and the structure of the molecule is reported here.

Methyl p-[[2,2'-iminobis[ethanolato]](2-)- $\left.N, O, O^{\prime}\right]$ phenylacetateboron (2; Figure 1) crystallized in the non-centrosymmetric space group $P 2{ }_{1} 2_{1} 21$, however, data collection was performed using molybdenum radiation, and the absolute configuration could not be determined due to the lack of an atom with significant anomalous dispersion. Intermolecular hydrogen bonding between $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}\left(\mathrm{N} 1 \cdots \mathrm{O} 2^{\mathrm{i}}=2.921\right.$ (2) \AA) and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between $\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \cdots \mathrm{Cg} 3^{\mathrm{ii}}$ $\left(\mathrm{C} 10 \cdots C g 3^{\mathrm{ii}}=3.618(2)\right.$; where $C g 3$ is the centroid of $\left.\mathrm{C} 1-\mathrm{C} 6\right)$ leads to the pair-wise association of molecules (Figure 2). These molecular associates are related via the twofold screw axes in the crystal structure (viewed perpendicular to the b axis in Figure 3).

Experimental

To a solution of $\mathrm{PdCl}_{2}(\mathrm{dppf})(160 \mathrm{mg}, 0.18 \mathrm{mmol})$ in dioxane $(24 \mathrm{ml})$ was added methyl 4 -(trifluoroacetoxyacetate $(1.58 \mathrm{~g}$, $5.93 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(2.49 \mathrm{ml}, 17.8 \mathrm{mmol})$ and 4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($1.30 \mathrm{ml}, 8.9 \mathrm{mmol}$). After stirring for 20 h at $100^{\circ} \mathrm{C}$, the reaction mixture was extracted with benzene. The extract was purified by flash column chromatography
(silica gel, $10 \% \mathrm{EtOAc}$ in hexanes) to afford the arylboronate $(1.47 \mathrm{~g}, 90 \%){ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.34(\mathrm{~s}, 12 \mathrm{H}), 3.64$ $(\mathrm{s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=10 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=10 \mathrm{~Hz}, 2 \mathrm{H})$. To a solution of the arylboronate $(1.47 \mathrm{~g}, 5.3 \mathrm{mmol})$ in diethylether $(53 \mathrm{ml})$ was added diethanolamine $(0.6 \mathrm{ml}, 5.8 \mathrm{mmol})$ in 2-propanol $(10 \mathrm{ml})$. The resulting mixture was stirred at ambient temperature for 72 h , the reaction mixture was then filtered and the solid was washed with diethyl ether to give cyclic aminoarylboronate ($1.08 \mathrm{~g}, 77 \%$) as a colorless powder. Crystals suitable for X-ray diffraction analysis were obtained by crystallization from ethyl acetate solution. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.49-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.96-3.03(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~s}$, $2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.74(\mathrm{~m}, 2 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 41.0, 51.1, 51.8, 63.2, 128.3, 132.7, 132.8, 172.6.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances and with $U_{\text {iso }}(\mathrm{H})$ values set to either 1.2 Ueq or 1.5 Ueq of the attached atom. They were refined on a riding model. All nonhydrogen atoms were refined anisotropically. This crystal was a weak anomalous scatterer collected with MoKa radiation, therefore, Friedel mates were merged (MERG 4) and absolute configuration was not determined.

Figures

[2,2'-Iminodiethanolato(2-)- $\left.\mathbf{k}^{3} \mathrm{O}, \mathrm{N}, \mathrm{O}^{\prime}\right][4$ - (methoxycarbonylmethyl)phenyl]boron

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BNO}_{4}$

$$
M_{r}=263.10
$$

Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=8.3776$ (11) \AA
$b=8.9269(11) \AA$
$c=17.369(2) \AA$
$V=1299.0(3) \AA^{3}$
$Z=4$
$F(000)=560$

Data collection

Rigaku Saturn

 diffractometerRadiation source: fine-focus sealed tube graphite - Rigaku SHINE
Detector resolution: 14.63 pixels mm^{-1}
ω scans
Absorption correction: numerical
(NUMABS; Higashi, 1999)
$T_{\text {min }}=0.985, T_{\text {max }}=0.997$
16363 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.112$
$S=1.17$
1725 reflections
173 parameters
0 restraints
$D_{\mathrm{x}}=1.345 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=452-453 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71075 \AA$
Cell parameters from 5108 reflections
$\theta=2.6-30.6^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=153 \mathrm{~K}$
Platelet, colorless
$0.30 \times 0.09 \times 0.06 \mathrm{~mm}$
$\times 0.06 \mathrm{~mm}$

1725 independent reflections
1707 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-10 \rightarrow 10$
$k=-11 \rightarrow 11$
$l=-22 \rightarrow 22$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0529 P)^{2}+0.4126 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations

supplementary materials

between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

The crystal was a weak anomalous scatterer collected with Mo K α radiation. Friedel mates were merged (MERG4) and the absolute configuration was not determined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$1.00908(19)$	$0.47529(18)$	$0.35582(9)$	$0.0281(4)$
O2	$0.85897(19)$	$0.47478(17)$	$0.23631(9)$	$0.0268(4)$
O3	$0.5232(2)$	$-0.2735(2)$	$0.39057(11)$	$0.0422(5)$
O4	$0.6510(3)$	$-0.2494(3)$	$0.50205(13)$	$0.0617(7)$
N1	$1.0730(2)$	$0.2952(2)$	$0.25504(10)$	$0.0249(4)$
H1	1.0599	0.1919	0.2577	0.030^{*}
C1	$0.7998(3)$	$0.2734(2)$	$0.34181(12)$	$0.0243(4)$
C2	$0.6576(3)$	$0.2247(3)$	$0.30806(13)$	$0.0253(4)$
H2	0.6285	0.2624	0.2589	0.030^{*}
C3	$0.5568(3)$	$0.1220(3)$	$0.34475(13)$	$0.0261(5)$
H3	0.4626	0.0888	0.3195	0.031^{*}
C4	$0.5932(3)$	$0.0679(3)$	$0.41775(13)$	$0.0263(5)$
C5	$0.7326(3)$	$0.1174(3)$	$0.45272(13)$	$0.0296(5)$
H5	0.7589	0.0827	0.5028	0.035^{*}
C6	$0.8342(3)$	$0.2173(3)$	$0.41551(13)$	$0.0276(5)$
H6	0.9294	0.2482	0.4406	0.033^{*}
C7	$1.1685(3)$	$0.4963(3)$	$0.33084(14)$	$0.0302(5)$
H7A	1.2382	0.5254	0.3744	0.036^{*}
H7B	1.1743	0.5747	0.2906	0.036^{*}
C8	$1.2172(3)$	$0.3441(3)$	$0.29856(15)$	$0.0313(5)$
H8A	1.3108	0.3534	0.2641	0.038^{*}
H8B	1.2427	0.2729	0.3405	0.038^{*}
C9	$0.8982(3)$	$0.4085(3)$	$0.16438(13)$	$0.0283(5)$
H9A	0.8939	0.4839	0.1226	0.034^{*}
H9B	0.8231	0.3263	0.1520	0.034^{*}
C10	$1.0671(3)$	$0.3484(3)$	$0.17388(14)$	$0.0297(5)$
H10A	1.0875	0.2650	0.1376	0.036^{*}
H10B	1.1469	0.4283	0.1649	0.036^{*}
C11	$0.4878(3)$	$-0.0470(3)$	$0.45767(13)$	$0.0287(5)$
H11A	0.4717	-0.0173	0.5120	0.034^{*}
H11B	0.3821	-0.0498	0.4323	0.034^{*}
C12	$0.5624(3)$	$-0.1999(3)$	$0.45463(15)$	$0.0330(5)$
C13	$0.5926(4)$	$-0.4222(3)$	$0.3835(2)$	$0.0499(8)$
H13A	0.7093	-0.4143	0.3831	0.060^{*}
H13B	0.5563	-0.4686	0.3354	0.060^{*}

sup-4

H13C	0.5589	-0.4840	0.4272	0.060^{*}
B1	$0.9234(3)$	$0.3847(3)$	$0.30025(14)$	$0.0236(5)$

Atomic displacement parameters $\left(\lambda^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0291(8)$	$0.0257(8)$	$0.0296(8)$	$-0.0045(7)$	$0.0027(6)$	$-0.0029(7)$
O2	$0.0318(8)$	$0.0203(7)$	$0.0283(8)$	$0.0029(7)$	$0.0023(7)$	$0.0014(6)$
O3	$0.0412(10)$	$0.0352(10)$	$0.0503(10)$	$0.0057(9)$	$-0.0049(9)$	$-0.0132(9)$
O4	$0.0875(17)$	$0.0522(12)$	$0.0453(11)$	$0.0243(14)$	$-0.0164(12)$	$0.0011(9)$
N1	$0.0271(9)$	$0.0181(8)$	$0.0295(9)$	$0.0004(8)$	$0.0027(8)$	$0.0024(8)$
C1	$0.0254(10)$	$0.0195(10)$	$0.0279(10)$	$0.0014(9)$	$0.0055(8)$	$-0.0020(9)$
C2	$0.0263(10)$	$0.0228(10)$	$0.0268(10)$	$0.0030(9)$	$0.0023(9)$	$0.0005(9)$
C3	$0.0232(10)$	$0.0234(10)$	$0.0318(11)$	$0.0010(9)$	$0.0011(9)$	$-0.0018(9)$
C4	$0.0289(10)$	$0.0213(10)$	$0.0286(10)$	$0.0009(9)$	$0.0075(9)$	$-0.0026(9)$
C5	$0.0360(12)$	$0.0291(11)$	$0.0236(10)$	$-0.0050(10)$	$0.0014(10)$	$0.0013(9)$
C6	$0.0282(10)$	$0.0270(11)$	$0.0276(10)$	$-0.0031(10)$	$0.0000(9)$	$-0.0030(9)$
C7	$0.0285(11)$	$0.0286(12)$	$0.0334(12)$	$-0.0054(10)$	$-0.0020(9)$	$0.0032(10)$
C8	$0.0262(11)$	$0.0284(12)$	$0.0393(13)$	$-0.0005(10)$	$-0.0021(10)$	$0.0054(10)$
C9	$0.0349(12)$	$0.0233(11)$	$0.0266(11)$	$-0.0002(10)$	$-0.0020(9)$	$0.0003(9)$
C10	$0.0347(12)$	$0.0259(11)$	$0.0285(11)$	$0.0016(10)$	$0.0062(10)$	$0.0010(9)$
C11	$0.0308(11)$	$0.0261(11)$	$0.0291(11)$	$-0.0023(9)$	$0.0051(9)$	$-0.0008(9)$
C12	$0.0345(12)$	$0.0316(12)$	$0.0330(11)$	$-0.0013(11)$	$0.0057(10)$	$0.0010(10)$
C13	$0.0444(15)$	$0.0340(14)$	$0.071(2)$	$0.0026(13)$	$0.0060(15)$	$-0.0162(15)$
B1	$0.0261(12)$	$0.0188(11)$	$0.0258(11)$	$0.0004(10)$	$0.0020(10)$	$-0.0009(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 7$	$1.417(3)$
$\mathrm{O} 1-\mathrm{B} 1$	$1.449(3)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.421(3)$
$\mathrm{O} 2-\mathrm{B} 1$	$1.474(3)$
$\mathrm{O} 3-\mathrm{C} 12$	$1.333(3)$
$\mathrm{O} 3-\mathrm{C} 13$	$1.455(4)$
$\mathrm{O} 4-\mathrm{C} 12$	$1.193(3)$
$\mathrm{N} 1-\mathrm{C} 10$	$1.488(3)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.491(3)$
$\mathrm{N} 1-\mathrm{B} 1$	$1.681(3)$
$\mathrm{N} 1-\mathrm{H} 1$	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	$1.397(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.405(3)$
$\mathrm{C} 1-\mathrm{B} 1$	$1.607(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.400(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{C} 3-\mathrm{C} 4$	$1.391(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 4-\mathrm{C} 5$	$1.388(3)$
$\mathrm{C} 4-\mathrm{C} 11$	$1.520(3)$

C5-C6	$1.392(3)$
C5—H5	0.9500
C6-H6	0.9500
C7-C8	$1.525(4)$
C7-H7A	0.9900
C7-H7B	0.9900
C8-H8A	0.9900
C8-H8B	0.9900
C9-C10	$1.523(3)$
C9—H9A	0.9900
C9—H9B	0.9900
C10-H10A	0.9900
C10-H10B	0.9900
C11-C12	$1.502(3)$
C11-H11A	0.9900
C11-H11B	0.9900
C13-H13A	0.9800
C13-H13B	0.9800
C13-H13C	0.9800

C7-O1-B1	109.67 (18)
C9-O2-B1	110.55 (17)
C12-O3-C13	114.9 (2)
C10-N1-C8	114.44 (19)
C10-N1-B1	105.44 (17)
C8-N1-B1	103.17 (17)
C10-N1-H1	111.1
C8-N1-H1	111.1
B1-N1-H1	111.1
C2- $\mathrm{C} 1-\mathrm{C} 6$	116.5 (2)
C2- $21-\mathrm{B} 1$	123.6 (2)
C6-C1-B1	119.9 (2)
C1-C2-C3	121.8 (2)
C1-C2-H2	119.1
C3-C2-H2	119.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	120.7 (2)
C4-C3-H3	119.7
C2-C3-H3	119.7
C5-C4-C3	118.2 (2)
C5-C4-C11	120.3 (2)
C3-C4-C11	121.5 (2)
C4-C5-C6	121.0 (2)
C4-C5-H5	119.5
C6-C5-H5	119.5
C5-C6-C1	121.7 (2)
C5-C6-H6	119.1
C1-C6-H6	119.1
O1-C7-C8	104.28 (19)
O1-C7-H7A	110.9
C8-C7-H7A	110.9
O1-C7-H7B	110.9
C8-C7-H7B	110.9
H7A-C7-H7B	108.9
N1-C8-C7	103.34 (19)
N1-C8-H8A	111.1
C7-C8-H8A	111.1

N1-C8-H8B	111.1
C7-C8-H8B	111.1
H8A-C8-H8B	109.1
O2-C9-C10	105.45 (19)
O2-C9-H9A	110.7
C10-C9-H9A	110.7
O2-C9-H9B	110.7
C10-C9-H9B	110.7
H9A-C9- H 9 B	108.8
N1-C10-C9	104.23 (19)
$\mathrm{N} 1-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	110.9
C9-C10-H10A	110.9
N1-C10-H10B	110.9
C9-C10-H10B	110.9
H10A-C10-H10B	108.9
C12-C11-C4	110.81 (19)
C12-C11-H11A	109.5
C4-C11-H11A	109.5
C12-C11-H11B	109.5
C4-C11-H11B	109.5
H11A-C11-H11B	108.1
$\mathrm{O} 4-\mathrm{C} 12-\mathrm{O} 3$	123.2 (3)
O4-C12-C11	124.8 (3)
O3-C12-C11	112.0 (2)
$\mathrm{O} 3-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	109.5
O3-C13-H13B	109.5
H13A-C13-H13B	109.5
$\mathrm{O} 3-\mathrm{C} 13-\mathrm{H} 13 \mathrm{C}$	109.5
H13A-C13-H13C	109.5
H13B-C13-H13C	109.5
$\mathrm{O} 1-\mathrm{B} 1-\mathrm{O} 2$	112.28 (19)
$\mathrm{O} 1-\mathrm{B} 1-\mathrm{C} 1$	111.41 (18)
$\mathrm{O} 2-\mathrm{B} 1-\mathrm{C} 1$	116.1 (2)
$\mathrm{O} 1-\mathrm{B} 1-\mathrm{N} 1$	101.97 (18)
$\mathrm{O} 2-\mathrm{B} 1-\mathrm{N} 1$	100.39 (17)
$\mathrm{C} 1-\mathrm{B} 1-\mathrm{N} 1$	113.35 (18)

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$
Cg 3 is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots 2^{\mathrm{i}}$	0.93	2.06	$2.921(2)$	154
$\mathrm{C} 10 — \mathrm{H} 10 \mathrm{~B} \cdots \mathrm{Cg}^{\mathrm{ii}}$	0.99	2.65	$3.618(2)$	166

Symmetry codes: (i) $-x+2, y-1 / 2,-z+1 / 2$; (ii) $-x+2, y+1 / 2,-z+1 / 2$.

Fig. 1

Fig. 2

Fig. 3

